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Testing diamond strength at high pressure

Karnig O. Mikaelian

Lawrence Livermore National Laboratory, Livermore, California 94551

We present a design to measure the strength of diamond near 30 

Mb using the Rayleigh-Taylor instability. It is a variation on the recently 

proposed design (Mikaelian, Phys. Plas. 17, 092701 (2010)) using the 

ignition pulse. To overcome the low opacity of diamond we introduce 

behind it a high-Z marker, gold, which has relatively large perturbations. 

The strong diamond acts as a pusher and at wavelengths of 50 m it 

flattens out the perturbation; with less or no strength the perturbations 

grow exceedingly large.

PACS numbers 62.20.F-, 62.50.-p, 47.20.Ma

Diamond is known as one of the strongest materials at atmospheric pressure. Its 

properties at high pressures, relevant for several applications1 (planetary cores, etc.) 

continue to be studied experimentally and theoretically. Recently, a model for diamond 

strength at high pressures was proposed based on experiments, simulations, and theory.2

In this brief communication we propose a new experimental technique to measure the 

strength of diamond at much higher pressures.

Experiments3,4 have measured total stress, up to 8-10 Mb, by analyzing the free-

surface velocity of an isentropically compressed diamond sample and extracting the 

diamond strength. This technique is necessarily one-dimensional in space (1D), using 
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VISAR5 to accurately record the free-surface velocity as a function of time and back-

integrating to deduce density and total stress in the sample. Under certain assumptions, 

one divides total stress into a longitudinal and transverse part, the difference between 

them being proportional to the yield strength.3,4

In this brief communication we propose another, perhaps more direct determination 

of diamond strength at high pressures, up to 30 Mb, building upon a method proposed 

recently.6 This method is necessarily two-dimensional in space (2D) and based on the 

Rayleigh-Taylor (RT) instability as originally proposed by Barnes et al7. Upon 

acceleration, the instability moves material from thin regions making them even thinner 

to thick regions making them even thicker, and the increased contrast (measured by an x-

ray radiograph) between those two regions reveals how much mass has transferred and 

hence the effect of the instability. Strength reduces this instability. Without going into 

any detail as to how this is accomplished on a laser system,8 we should recall that this 

method depends on resolving relatively short wavelengths and on identifying strength as 

the true source suppressing growth. Rather than viewing one method as superior to the 

other, we should consider them as complimentary.

In addition to its application in the study of planetary interiors1, diamond is a 

candidate as an ablator in Inertial Confinement Fusion (ICF) capsules9 and its strength, 

before it melts, is expected to suppress at least partially the growth of RT instabilities. As 

in Ref. 6, we will continue using the early part of an ignition pulse to drive a planar target 

with 2D perturbations; these perturbations grow or do not grow depending on the 

weakness or strength of the target.6,7 In fact by simply replacing the tantalum in Ref. 6 by 

diamond, also called High Density Carbon (HDC), keeping everything else the same we 

obtain a viable design, except for one difficulty discussed below. Furthermore, one 
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obtains better contrast than tantalum. This is to be expected because HDC is much 

stronger than Ta and therefore the contrast between growth and no-growth, indicative of 

weakness and strength, is much more pronounced with HDC. Taking advantage of this 

contrast one would significantly improve the experiment by imposing wavelengths longer 

than the =25 m considered earlier: Such a short wavelength was necessary for Ta, 

based on models of its strength, to obtain a measurable contrast between strength and no-

strength cases, shorter wavelengths being more sensitive to strength. With HDC, 

however, one can go to 50 m or even 100 m wavelengths, which are easier to 

diagnose, and still maintain a good contrast, making the experiment “easier.” By direct 

numerical simulations with CALE10 we find that peak-to-valley amplitudes remain below 

1 m with strength-on while the no-strength cases grow to 9.0 m and 3.4 m for =50 

m and 100 m respectively.

Of the three methods discussed in Ref. 6 only method C is viable: The diamond starts 

flat and the perturbed CH acts as a “pusher,” a technique perhaps described best as micro-

indentation.6 Diamond, even more than tantalum, would be hard to press or machine into 

a sinusoidal shape.

This design, simply replacing the Ta with HDC, would have been sufficient had it not 

been for one diagnostic difficulty: HDC is low Z (6) and therefore difficult to radiograph.

The design proposed in Ref. 6 can work for practically all high-Z materials (Au, Pb, Mo, 

etc.) because a face-on radiograph will reveal growth or no growth and therefore be a 

measure of strength. Diamond is an exception because it is strong yet low-Z, requiring a 

modification which, we believe, can be applied to all low-Z materials of interest.

The solution is to introduce a high-Z marker layer and use the HDC itself as a 

“pusher” acting as a flattening agent. Specifically, we add 10 m of gold with its 
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perturbed surface behind the flat diamond. This is method B mentioned in Ref. 6 except 

the strengths are interchanged – A strong flat “pusher”, diamond, pressing and 

accelerating a curved “pushee”, gold. The density contrast is 18.24/3.51~5.2, or Atwood 

number ~0.68, leading to vigorous RT growth in the absence of strength. With strength, 

the diamond does not bend and instead flattens out the perturbation in the gold.

The design is shown in Fig. 1. The ablator is again 50 m of CHBr (this number was 

misreported as 75 m in the text of Ref. 6 – it was 50 m; The inset in Fig. 1 of Ref. 6 

showed the correct dimensions). Next comes 25 m of CH, as before, and 25 m of HDC 

(replacing the 25 m of Ta), followed by 10 m of Au as discussed above. The gold is 

backed by 200 m of LiF. This was 200 m of CH earlier; we switched to LiF because it 

appears to be preferred as a window for VISAR. Needless to say, careful VISAR 

measurements on the back side of the gold will be necessary to establish the correct 1D 

motion. The drive is about 2 ns longer than before, climbing to 180 eV, compared with 

the previous 140 eV. This higher drive produces higher pressures in HDC – about 30 Mb 

instead of the previous 10 Mb in Ta. We believe this is as high as one can follow the 

ignition pulse before melting. Better and no doubt longer drives can be designed to take 

targets to even higher pressures, but for the present we continue to follow the ignition 

pulse. Fig. 1 shows the radiation drive but we use the photon-frequency-dependent-

source that produces this Tr. 

The function of the LiF is well-known: To prevent decompression or possibly spall of 

the gold layer. The role played by the 25 m CH tamper here and in Ref. 6 may be less 

obvious. Since we work within the confines of a “given” drive, viz. the ignition pulse, we 

use the CH to improve the pressure seen by the HDC. Without it the first shock would 

pass from CHBr directly to the HDC. With the CH, this shock is somewhat weaker and, 
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much more importantly, is partially reflected back towards the CHBr and then re-

reflected towards the HDC, creating a smoother drive on the HDC. It played the same 

role in Ref. 6 tamping the drive on Ta. Such temporal shaping of shocks works only if the 

density (more accurately the impedance) of the middle layer, CH, is less than those of the 

two materials on either side, CHBr and HDC or Ta.

We now turn to the results of 2D simulations with CALE.10 The upper surface of the 

gold has sinusoidal perturbations 6 m peak-to-valley, a sizable fraction of its average 10 

m thickness and easily diagnosed, if desired, before the start of the pulse. What is 

interesting, of course, is the disappearance of this contrast between the 13 m thick part 

and the 7 m thin part as the drive is turned on and the diamond flattens it out. If the 

diamond had little or no strength, it itself would bend and wrap around the heavier gold

and the perturbations would grow very large. This is shown in Fig. 2 where we plot the 

peak-to-valley amplitude at the upper surface of the gold as a function of time for three 

cases labeled ISG (for Improved Steinberhg-Guinan, the strength model2 described in the 

Appendix), ISG/2 where the diamond strength is reduced to half of its ISG value, and 0

meaning no strength. The last grows to 35 m, ISG/2 grows to a peak of about 10 m 

before decreasing back to its original 6 m, while ISG essentially flattens out to zero. The 

wavelength is 50 m.

For longer wavelengths such as =100 m perturbations grow even if the strength is 

ISG: From the initial 6 m to 13 m by t=22 ns. If strength is ISG/2, then the peak-to-

valley amplitude grows to 16 m. With no strength it evolves to 23 m.

Needless to say, the main player is the diamond strength. For gold, we used a 

standard SG model for its strength and compared the results with no strength – there was 
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practically no difference. The reason, of course, is that gold is quite weak and, compared 

to diamond, it flows almost like a fluid.

The amplitudes displayed in Fig. 2 do not tell the whole story because the backside of 

the gold also evolves and a face-on radiograph is sensitive to the total r of the gold. The 

rest of the target being low-Z is transparent to radiographic x-rays. Snapshots of the gold 

(red) section of the target are shown in Fig. 3 at 19 and 22 ns for the three assumptions 

concerning diamond strength, all starting from the same method B initial configuration 

shown at t=0. The flattening of the gold by the strong (ISG) diamond is quite clear, and 

the small overshoot at late time, t=22 ns, pushes mass to the edges at x=0 and 50 mm. 

The opposite happens with no strength: Mass accumulates at the middle, x=25 mm, 

indicating robust RT growth.

Without strength at 22 ns the contrast in r between the center and the edge is 3.1: 

The central r is approximately 23.6 mg/cm2 versus the edge r of about 7.6 mg/cm2

only. With ISG the r’s are 17.1 and 26.6 mg/cm2 respectively, a contrast of 0.64, almost 

five times less.

To summarize, the high-pressure strength of a high-Z material like tantalum can be 

measured by the method described in Ref. 6. The strength of a low-Z material like 

diamond can be measured by introducing a high-Z and relatively soft marker like gold as 

illustrated here. In both cases one can bypass having to shape the strong material by using 

methods B or C as appropriate.
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APPENDIX: THE IMPROVED STEINBERG-GUINAN MODEL

The yield strength Y in the improved Steinberg-Guinan model2 (ISG) is given by
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There are 4 new parameters, all non-dimensional, in addition to the 8 parameters in the 

standard Steinberg-Guinan model11 reviewed in the Appendix of Ref. 6 using the same 

notation.

For diamond we used 0Y =0.9 Mb,  =0, 0 =0, n =0.27, A =0.44/Mb, 0 =3.51

g/cm3, B =1.510-5/K, whmxY =10 Mb, AISG=-0.596, MISG=1.588, ISG=3.47, and 

ISG=0.88.

In the calculations labeled ISG/2 we let 2/00 YY  and 2/whmxwhmx YY  . This 

work-hardening maximum plays no role as the strength of the diamond never approaches 

such a high value. Maximum compressions are approximately 3 and maximum yield 
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strength in diamond reaches 3.25 Mb with ISG and 1.7 Mb with ISG/2. The maximum 

pressure, in both cases, was about 30 Mb.

Clearly, the SG model is recovered if 1F , for example, by letting ISG . 

The SG and ISG models for diamond are compared in Fig. 4.
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Figure Captions

Fig. 1. (Color) Target and drive used in the paper. The target consists of 50 m of CHBr

ablator (green), followed by 25 m of CH tamper (yellow), 25 m of diamond (blue), 

10 m of gold (red), backed by 200 m of LiF window (cyan). The RT pulse driving 

the target is the same as the early, 0-17 ns, part of the ignition pulse, held constant at 

~180 eV for another half a nanosecond before turning off.

Fig. 2. Time evolution of the peak-to-valley amplitude on the upper surface of the gold 

driven by flat diamond (See Fig. 3). The strength model ISG is outlined in the 

Appendix. ISG/2 refers to half this strength, and the fast growing upper curve labeled 

0 assumes no strength in the diamond. Gold strength has no effect on these curves.

=50 m.

Fig. 3. (Color) Snapshots of the CALE calculations at 19 and 22 ns for the three

assumptions concerning diamond strength: ISG, ISG/2, and 0. As in Fig. 1, 

green=CHBr, yellow=CH, blue=diamond, red=gold, and cyan=LiF. The scale is 

given by the horizontal width, =50 m.

Fig. 4. Yield strength of diamond as a function of compression /0 for the SG and ISG 

models, evaluated at T=300K.
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4


